FEATURES OF OOP
Objects
When you approach a programming problem in an object-oriented language, you no longer ask how the problem will be divided into functions, but how it will be divided into objects. Thinking in terms of objects, rather than functions, has a surprisingly helpful effect on how easily programs can be designed. This results from the close match between objects in the programming sense and objects in the real world. Example of objects: Car, Actor, Student, ect.Class
A class is a template for an object, a user-defined datatype that contains variables, properties, and methods. A class defines the abstract characteristics of a thing (object), including its characteristics (its attributes, fields or properties) and the things it can do (behaviors, methods, operations or features). One might say that a class is a blueprint or factory that describes the nature of something. For example, the class Dog would consist of traits shared by all dogs, such as breed and fur color (characteristics), and the ability to bark and sit (behaviors). Classes provide modularity and structure in an object-oriented computer program. A class should typically be recognizable to a non-programmer familiar with the problem domain, meaning that the characteristics of the class should make sense in context. Also, the code for a class should be relatively self-contained (generally using encapsulation). Collectively, the properties and methods defined by a class are called members.Method
Method is a set of procedural statements for achieving the desired result. It performs different kinds of operations on different data types. In a programming language, methods (sometimes referred to as "functions") are verbs. Lassie, being a Dog, has the ability to bark. So bark() is one of Lassie's methods. She may have other methods as well, for example sit() or eat() or walk() or save(Timmy). Within the program, using a method usually affects only one particular object; all Dogs can bark, but you need only one particular dog to do the barking.Message passing
"The process by which an object sends data to another object or asks the other object to invoke a method." Also known to some programming languages as interfacing. For example, the object called Breeder may tell the Lassie object to sit by passing a "sit" message that invokes Lassie's "sit" method. The syntax varies between languages, for example: [Lassie sit] in Objective-C. In Java, code-level message passing corresponds to "method calling". Some dynamic languages use double-dispatch or multi-dispatch to find and pass messages.Inheritance
Inheritance is a process in which a new class (Derived Class) inherits all the state and behavior of another existing class (Base Class). This type of relationship is called child-Parent or is-a relationship. "Subclasses" are more specialized versions of a class, which inherit attributes and behaviors from their parent classes, and can introduce their own.For example, the class Dog might have sub-classes called Collie, Chihuahua, and GoldenRetriever. In this case, Lassie would be an instance of the Collie subclass. Suppose the Dog class defines a method called bark() and a property called furColor. Each of its sub-classes (Collie, Chihuahua, and GoldenRetriever) will inherit these members, meaning that the programmer only needs to write the code for them once.
Each subclass can alter its inherited traits. For example, the Collie subclass might specify that the default furColor for a collie is brown-and-white. The Chihuahua subclass might specify that the bark() method produces a high pitch by default. Subclasses can also add new members. The Chihuahua subclass could add a method called tremble(). So an individual chihuahua instance would use a high-pitched bark() from the Chihuahua subclass, which in turn inherited the usual bark() from Dog. The chihuahua object would also have the tremble() method, but Lassie would not, because she is a Collie, not a Chihuahua. In fact, inheritance is an "a... is a" relationship between classes, while instantiation is an "is a" relationship between an object and a class: a Collie is a Dog ("a... is a"), but Lassie is a Collie ("is a"). Thus, the object named Lassie has the methods from both classes Collie and Dog.
Multiple inheritance is inheritance from more than one ancestor class, neither of these ancestors being an ancestor of the other. For example, independent classes could define Dogs and Cats, and a Chimera object could be created from these two that inherits all the (multiple) behavior of cats and dogs. This is not always supported, as it can be hard to implement.
Abstraction
Abstraction refers to the act of representing essential features without including the background details or explanations. Classes use the concept of abstraction and are defined as a list of abstract attributes.Encapsulation
Encapsulation conceals the functional details of a class from objects that send messages to it.For example, the Dog class has a bark() method variable, data. The code for the bark() method defines exactly how a bark happens (e.g., by inhale() and then exhale(), at a particular pitch and volume). Timmy, Lassie's friend, however, does not need to know exactly how she barks. Encapsulation is achieved by specifying which classes may use the members of an object. The result is that each object exposes to any class a certain interface - those members accessible to that class. The reason for encapsulation is to prevent clients of an interface from depending on those parts of the implementation that are likely to change in the future, thereby allowing those changes to be made more easily, that is, without changes to clients.
0 comments:
Post a Comment